Microgreens are immature edible leafy greens with a higher concentration of phytonutrients than in mature leaves, which makes them a novel functional food. This research featured antioxidant, anticarcinogenic, and antidiabetic properties of coriander microgreens. 
 Aqueous and ethanolic extractions of coriander microgreens and mature leaves underwent a phytochemical analysis of antioxidant potential using the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical method and the ferric reducing antioxidant power (FRAP) assay. The analysis of antidiabetic and anticarcinogenic properties included the method of α-amylase enzyme inhibition and the MTT colorimetric assay. 
 The screening test inferred the presence of alkaloids, terpenoids, glycosides, steroids, tannins, flavonoids, phenols, carbohydrates, and proteins in both microgreens and mature leaves. The quantitative analysis showed that the ethanolic extract of the microgreen sample exhibited higher total phenols. Total flavonoids, steroids, carbohydrates, and proteins were higher both in microgreen extracts, if compared with those of mature leaves. Ascorbic acid, chlorophyll-a, chlorophyll-b, and carotenoids demonstrated a more substantial presence in mature leaves. The gas chromatography-mass spectrometry (GC/MS) analysis of coriander microgreens revealed such bioactive compounds as thienopyrimidines, phenolic amide, imidazo pyridazine, phenolic constituents, and essential oil. Mature leaves were rich in phenolic compounds, steroids, terpenoids, essential oils, and fatty acid esters. All these substances are known for their therapeutic antioxidant, antidiabetic, and anticarcinogenic properties. The microgreen samples exhibited greater ferric reducing antioxidant power, α-amylase enzyme inhibition, and cytotoxicity activity at a lower concentration of extract than mature leaves.
 Coriander microgreens proved to have a promising antioxidant, anticarcinogenic, and antidiabetic potential and can be used in daily food additives.