Some kinetic studies of the interactions between Escherichia coli phosphoenolpyruvate carboxylase (orthophosphate:oxaloacetate carboxylase (phosphorylating) EC 4.1.1.31) acetyl coenzyme A, fructose 1,6-bisphosphate, and aspartate were performed. Activation of the enzyme by fructose 1,6-bisphosphate is anomalous by comparison with acetyl coenzyme A in that it confers hysteretic properties on the enzyme. In the presence of both activators and aspartate, hysteresis is observed also, but the approach to optimum catalytic activity can be fit to an equation for a second-order reaction with respect to enzyme concentration. Since, however, hysteresis is not a result of any apparent association-dissociation reaction, the apparent fit to a second-order kinetic equation is probably not real but is the result of a multistep activation mechanism. Hysteresis is not eliminated by preincubation of the enzyme with fructose 1,6-bisphosphate, acetyl coenzyme A, or phosphoenolpyruvate singly or in any pair of combinations. Hysteresis is associated, therefore, with the slow conformation change from the inactive species to the active species under the influence of all three of those reactants. The enzyme complex resulting from the binding of each activator, including phosphoenolpyruvate, has an increased affinity for the other activators. A kinetic method for estimating the relative changes in affinity of these complexes for some of the other reactants is presented. At concentrations of the activators below their K a , synergistic effects are evident, particularly in their ability to relieve aspartate inhibition. Aspartate inhibition is competitive with acetyl coenzyme A both in the absence and in the presence of low concentrations of fructose 1,6-bisphosphate. Increasing the concentrations of fructose 1,6-bisphosphate results in an increase in the apparent K l for aspartate, suggesting that synergistic activation by fructose 1,6-bisphosphate is a result of the increased affinity of the fructose 1,6-bisphosphate-enzyme complex for acetyl coenzyme A, and a shift in the concentration of enzyme species away from the one(s) to which aspartate can bind most easily. In the presence of fructose 1,6-bisphosphate alone optimal activation can be achieved, but the concentrations required in vitro are high and suggest that fructose 1,6-bisphosphate alone does not function in that capacity physiologically, but primes the enzyme for more effective activation by acetyl coenzyme A and/or phosphoenolpyruvate.
Read full abstract