Wireless Sensor Networks (WSNs) are susceptible to various security threats owing to its deployment in hostile environments. Intrusion detection system (IDS) contributes a critical role on securing WSNs by identifying malevolent activities and ensuring data integrity. Traditional IDS techniques often struggle with the dynamic and resource-constrained nature of WSNs. In this paper, Dynamically Stabilized Recurrent Neural Network Optimized with Intensified Sand Cat Swarm Optimization for Wireless Sensor Network Intrusion identification (DSRNN-ISCOA-ID-WSN) is proposed. Initially, the input data is amassed from WSN-DS dataset. After that, the pre-processing segment receives the data. In pre-processing stage, redundant and biased records are removed from input data with the help of Adaptive multi-scale improved differential filter (AMSIDF). Then the optimal are selected by utilizing Wolf-Bird Optimization Algorithm (WBOA). DSRNN is used to classify the data as Normal, Grey hole, Black hole, Time division multiple access (TDMA), and Flooding attacks. Then Intensified Sand Cat Swarm Optimization (ISCOA) is employed to optimize the weight parameters of DSRNN for accuracte classification. The proposed DSRNN-ISCOA-ID-WSN technique is implemented Python. The performance of the proposed DSRNN-ISCOA-ID-WSN approach attains 29.24 %, 33.45 %, and 28.73 % high accuracy; 30.53 %, 27.64 %, and 26.25 % higher precision when compared with existing method such as Machine Learning-Powered Stochastic Gradient Descent Intrusions Detection System for WSN Attacks (SGDA-ID-WSN), An updated dataset to identify threats in WSN (CNN-ID-WSN) and Denial-of-Service attack detection in WSN: a Low-Complexity Machine Learning Model (DTA-ID-WSN) respectively.
Read full abstract