Abstract

In this article, we propose a physical layer security (PLS) technique, namely security-aware spatial modulation (SA-SM), in a multiple-input multiple-output-based heterogeneous network, wherein both optical wireless communications and radio-frequency (RF) technologies coexist. In SA-SM, the time-domain signal is altered prior to transmission using a key at the physical layer for combating eavesdropping. Unlike conventional PLS techniques, SA-SM does not rely on channel characteristics for securing the information, as its perception is self-imposed, which allows its adoption in radio-optical networks. Additionally, a novel periodical key selection algorithm is proposed. Instead of having multiple keys stored in the nodes, by using off-the-shelf and low-complexity machine learning (ML) methods, including a support vector machine, logistic regression and a single-layer neural network, SA-SM nodes can estimate the used key. Results show that a positive secrecy capacity can be achieved for both the RF and optical links by using 1000 different keys, with a minimal signal-to-noise ratio penalty of less than 5 dB for the legitimate user using SA-SM versus conventional transmission at a bit-error-rate of 10−4. The analysis also includes computational time and classification accuracy evaluation of the various proposed ML techniques using different hardware architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.