Contact lenses are ideally suited for extended drug delivery to the ocular tissues, but incorporation of any particulate system affects the critical properties of the contact lens. Timolol loading by the conventional soaking method does not significantly alter the critical properties of the contact lens. However, there are challenges of low drug loading and high burst release. This research work aimed to investigate the effect of gold nanoparticles (GNPs) on loading and its release kinetics from the contact lens using the soaking method. In one approach, GNPs were loaded into the timolol soaking solution (GNPs-SS), and in another approach, GNPs were incorporated into the contact lenses (GNPs-CL) during fabrication. The contact lenses were soaked at two different concentrations of timolol (i.e., 2 mg/ml and 4 mg/ml). Swelling and optical transmittance were not significantly affected by the presence of GNPs in the contact lenses. A significant uptake/loading of timolol using the GNPs in both the approaches was observed. The in vitro flux data showed no significant improvement in the release rate profiles of timolol when using both approaches. However, the in vivo study in the rabbit tear fluid showed high timolol concentration with the GNPs-laden contact lens at all timepoints in comparison to the soaked contact lenses without GNPs. The in vivo pharmacodynamic study in rabbits showed a 2 mmHg average fall in intraocular pressure (72 h) using the GNPs-laden contact lenses, while the soaked contact lenses without GNPs and eye drops solution (0.5 %w/v) showed 2 mmHg. The drug distribution study in the ocular tissue showed a significant improvement in the drug deposition with the GNPs-laden contact lenses in the ciliary muscle and conjunctiva. This study successfully demonstrated the potential of GNPs to enhance the uptake of drug from the drug soaking solution to treat glaucoma without compromising the critical properties of contact lens. Statement of SignificanceIn this study, we have overcome the limitation of the conventional soaking method of low drug loading and high burst release from the contact lenses. We have investigated the effect of gold nanoparticles (GNPs) on the timolol loading and its release kinetics from the contact lenses. The study revealed the potential of GNPs to enhance the uptake of timolol from the timolol soaking solution to treat glaucoma without compromising the critical lens properties.