Colloidal nanocrystals stand at the forefront of various applications given their unique optoelectronic properties and abundant active sites. However, the surface dynamics of nanocrystals make it difficult to avoid performance sacrifices that result from certain processing methods. Here we introduce a general nanoscale electric vehicle (NEV) platform for efficient and lossless manipulation and processing of functional nanomaterials by selective electrophoretic deposition. Dual-ligand modified system comprising charging ligands and anchoring ligands enables NEV to be universally compatible with fine patterning of various nanomaterials such as quantum dots, perovskites, rare-earth compositions or Janus materials. Without performance impairment from additional modifications, the luminescence performance of the nanocrystals improved significantly with the help of NEV to a level comparable to the commercial standard. Furthermore, we demonstrate the capabilities of our approach for display and anti-counterfeiting encryption applications. Our strategy offers a versatile way of creating high-performance nanomaterial devices in a cost-effective and non-destructive manner.
Read full abstract