Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-day-old green-eggshell yellow feather laying chickens were randomly assigned to four groups after a 5-day of acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/bone volume (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Read full abstract