AbstractThe atmospheric methane (CH4) concentration, a potent greenhouse gas, is on the rise once again, making it critical to understand the controls on CH4 emissions. In Arctic tundra ecosystems, a substantial part of the CH4 budget originates from the cold season, particularly during the “zero curtain” (ZC), when soil remains unfrozen around 0 °C. Due to the sparse data available at this time, the controls on cold season CH4 emissions are poorly understood. This study investigates the relationship between the fall ZC and CH4 emissions using long‐term soil temperature measurements and CH4 fluxes from four eddy covariance (EC) towers in northern Alaska. To identify the large‐scale implication of the EC results, we investigated the temporal change of terrestrial CH4 enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiaġvik, AK, from 2001 to 2017 and their association with the ZC. We found that the ZC is extending later into winter (2.6 ± 0.5 days/year from 2001 to 2017) and that terrestrial fall CH4 enhancements are correlated with later soil freezing (0.79 ± 0.18‐ppb CH4 day−1 unfrozen soil). ZC conditions were associated with consistently higher CH4 fluxes than after soil freezing across all EC towers during the measuring period (2013–2017). Unfrozen soil persisted after air temperature was well below 0 °C suggesting that air temperature has poor predictive power on CH4 fluxes relative to soil temperature. These results imply that later soil freezing can increase CH4 loss and that soil temperature should be used to model CH4 emissions during the fall.
Read full abstract