This paper presents an online loss-minimization algorithm (LMA) for a fuzzy-logic-controller (FLC)-based interior permanent-magnet synchronous-motor (IPMSM) drive to yield high efficiency and high dynamic performance over a wide speed range. LMA is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector-control purpose, FLC is used as a speed controller, which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. In order to test the performance of the proposed drive in real time, the complete drive is experimentally implemented using DSP board DS1104 for a prototype laboratory 5-hp motor. The performance of the proposed loss-minimization-based FLC for IPMSM drive is tested in both simulation and experiment at different operating conditions. A performance comparison of the drive with and without the proposed LMA-based FLC is also provided. It is found from the results that the proposed LMA and FLC-based drive demonstrates higher efficiency and better dynamic responses over FLC-based IPMSM drive without LMA.
Read full abstract