In this Brief Report we investigate the multiscale hydrodynamical response of a liquid as a function of mixture composition. This is done via a series of molecular dynamics simulations in which the wave-vector-dependent viscosity kernel is computed for three mixtures, each with 7-15 different compositions. We observe that the viscosity kernel is dependent on composition for simple atomic mixtures for all the wave vectors studied here; however, for a molecular mixture the kernel is independent of composition for large wave vectors. The deviation from ideal mixing is also studied. Here it is shown that the Lorentz-Berthelot interaction rule follows ideal mixing surprisingly well for a large range of wave vectors, whereas for both the Kob-Andersen and molecular mixtures large deviations are found. Furthermore, for the molecular system the deviation is wave-vector dependent such that there exists a characteristic correlation length scale at which the ideal mixing goes from underestimating to overestimating the viscosity.