ABSTRACT A peanut vacuum developed by redesigning an existing grain vacuum (vac) specifically to handle farmers' stock peanuts was tested. The peanut vac consists of a PTO-driven positive displacement blower, two cyclone separators, and a hydraulically-powered airlock valve. The blower pulls air and farmers' stock peanuts through a length of suction hose into the first cyclone separator where the peanuts are separated from the airstream. The air then travels to a second cyclone separator where the suspended dirt and other fine particles are separated from the airstream. The cleaned air proceeds through the blower and is blown through a discharge chute beneath the outlet of an airlock valve mounted on the bottom of the first cyclone. Farmers' stock peanuts from the first cyclone fall from the outlet of the airlock valve into the airstream in the discharge chute and are conveyed up into a waiting trailer. The peanut vac is powered by a 1000-rpm PTO shaft of a tractor supplying a minimum of 75 kW. Initial feasibility tests were conducted while unloading 1/10-scale farmers' stock warehouses to determine the optimum operating parameters to minimize mechanical damage. The optimized peanut vac was taken to two locations in South Georgia and used to extract peanuts from farmers' stock warehouses in addition to the conventional equipment used for warehouse bailout. The weight of peanuts on each truck, time to fill each truck, and the farmers' stock grade factors for the peanuts in each truck was recorded and compared by conveyance method. At the first location, the conventional equipment consisted of a skid-steer loader with an oversized bucket driven into the pile of peanuts. The peanuts were emptied into a surge bin feeding a portable conveyor belt that conveyed the peanuts into a waiting truck. At the second location, a large articulated bucket loader was used in lieu of the skid-steer loader. Peanuts loaded using the conventional method averaged 5.2% foreign material (FM) and 6.7% loose shelled kernels (LSK). Peanuts loaded using the peanut vac averaged 2.7 and 4.9% FM and LSK, respectively. Trucks were loaded at a rate of 187 MT/h using conventional equipment compared to 61MT/h using the peanut vac.
Read full abstract