Field electron emission cathodes were constructed from knitted fabrics comprised entirely of carbon nanotube (CNT) fibers. The fabrics consisted of a top layer array of ∼2 mm high looped structures and a bottom layer that was 1 mm thick with a flat underlying surface. Field emission (FE) experiments were performed on 25.4 mm diameter CNT fabric cathodes in both direct current (DC) and pulsed voltage (PV) modes, and the results were compared to those obtained from a CNT film cathode. The DC measurements were performed at a maximum voltage of 1.5 kV. The CNT fabric cathode emitted 20 mA, which was an 8× increase over the emission current from the CNT film cathode. The DC results were analyzed using the corrected form of the Fowler–Nordheim FE theory initially developed by Murphy and Good, which allows for the determination of the formal emission area and effective gap-field enhancement factor. The PV experiments resulted in Ampere level emission currents from both CNT fabric and CNT film cathodes. For a 25 kV, 500 ns voltage pulse, the CNT fabric cathode emitted 4 A, which was 2× more current than the CNT film cathode. Scanning electron microscopy imaging after PV testing revealed that the fibers remained intact after >5000 pulses. These results indicate that knitted CNT fabrics offer a promising approach for developing large area, conformable, robust FE cathodes for vacuum electronic devices.
Read full abstract