Resonant Bessel-beam launchers are low-cost, planar, miniaturized devices capable of focusing electromagnetic radiation in a very efficient way in various frequency ranges, with recent increasing interest for microwave and millimeter-wave applications (i.e., 3-300 GHz). In recent years, various kinds of launchers have appeared, with different feeding mechanisms (e.g., coaxial probes, resonant slots, or loop antennas), field polarization (radial, azimuthal, and longitudinal), and manufacturing technology (axicon lenses, radial waveguides, or diffraction gratings). In this paper, we review the various features of these launchers both from a general electromagnetic background and a more specific leaky-wave interpretation. The latter allows for deriving a useful set of design rules that we here show to be applicable to any type of launcher, regardless its specific realization. Practical examples are discussed, showing a typical application of the proposed design workflow, along with a possible use of the launchers in a modern context, such as that of wireless power transfer at 90 GHz.
Read full abstract