Abstract Photoluminescence (PL) spectra of ZnSe single crystals annealed in different ambients containing molecular nitrogen are investigated. The compensating activity of N impurity in n-ZnSe crystals is shown. It is caused by the formation of N Se acceptor centers, having 101–108 meV activation energy. The intensity of amplification of both long-wave luminescence spectra bands and the edge luminescence spectra bands caused by the presence of nitrogen in annealing medium is investigated. The presented results allow one to assign the long-wave luminescence to deep acceptors caused by uncontrollable impurities, and the relevant bands of the edge luminescence spectra to the excitons bound with the same deep acceptors. The model explaining the transformations of the luminescent properties of ZnSe crystals by means of nitrogen impurity doping is proposed. The model considers the presence of donors having 75 meV activation energy, acceptors having 220–720 meV activation energy and centers having levels localized near the middle of the band gap.
Read full abstract