We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splitting of spinor polariton states and spin dependent polariton-polariton interactions. We present the novel class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between external magnetic field and TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions non equivalent. This can be interpreted as solitonic analog of Aharonov-Bohm effect.
Read full abstract