The evolution of fluvial systems is greatly impacted by mid-channel bars, a typical morphodynamic process in natural rivers. Sometimes, the growth of vegetation over these bars complicates the morphological behaviour by interacting with the flow. It is therefore necessary to have a fundamental interpretation of the flow-turbulence structure around the mid-bar in presence of vegetation cover in order to understand braiding dynamics, still studies in this area are scarce. The present study investigates the process-form-vegetation-interaction through experimental investigation at a flume scale mid-channel bar model with different natural vegetation cover arrangements (paddy, leafy, and rigid stem). The flow-turbulence behaviour has been observed through the bifurcated channel using the three-dimensional Acoustic Doppler Velocimeter (ADV). Results showed that the longitudinal velocity component varies with the different vegetation cover, and it was highest with leafy vegetation (about 32%). Similarly, the Reynolds Stress and Turbulence Intensity were also observed to be higher in case of leafy vegetation. A unique pattern of flow-turbulence parameters was observed near the bar level, the lower canopy level, and the upper canopy level. Moreover, it was found that vegetation structure and its flexible nature influence both longitudinal velocity reduction and momentum transfer at and over the canopy, as well as the thickness of the shear layer region.