This study examined functional changes longitudinally over 2 years in neural correlates associated with working memory in youth with and without autism spectrum disorder, and the impact of increasing cognitive load. We used functional magnetic resonance imaging and a visuo-spatial 1-back task with four levels of difficulty. A total of 14 children with autism spectrum disorder and 15 typically developing children (ages 7-13) were included at baseline and followed up approximately 2 years later. Despite similar task performance between groups, differences were evident in the developmental trajectories of neural responses. Typically developing children showed greater load-dependent activation which intensified over time in the frontal, parietal and occipital lobes and the right fusiform gyrus, compared to those with autism spectrum disorder. Children with autism spectrum disorder showed minimal age-related changes in load-dependent activation, but greater longitudinal load-dependent deactivation in default mode network compared to typically developing children. Results suggest inadequate modulation of neural activity with increasing cognitive demands in children with autism spectrum disorder, which does not mature into adolescence, unlike their typically developing peers. Diminished ability for children with autism spectrum disorder to modulate neural activity during this period of maturation suggests that they may be more vulnerable to the increasing complexity of social and academic demands as they progress through adolescence than their peers.
Read full abstract