An improved understanding of tunnel fire dynamics is crucial for fire and life safety. This work highlights the significance of Computational Fluid Dynamics (CFD) techniques in addressing the interaction between tunnel fires and rainfall. The discrete phase model based on the Lagrangian approach is applied to simulate raindrops, while the species transport model is used to simulate fuel combustion. A numerical model is established to investigate the impact of rainfall on tunnel fires, and the correctness of the model is verified by comparing the results to model-scale tunnel experiments. Results show that the raindrops increase the local pressure in the rainfall area, creating a pressure difference between the rainfall tunnel portal and the no-rain portal, which leads to longitudinal airflow inside the tunnel. This rain-induced airflow prevents smoke from moving toward the rainfall tunnel portal and decreases the smoke height near the no-rainfall portal. Correlations between the local increased pressure, induced-airflow velocity, and rainfall parameters are proposed. Besides, the model is scaled up to full-size, and real-scale tunnel fires under the influence of rainfall are evaluated. Findings draw attention to tunnel fire dynamics under extreme weather conditions for improved fire safety and evacuation strategies.
Read full abstract