The interaction between five gemini amphiphilic pseudopeptides (GAPs) differing by the length of the central spacer and a model membrane lipid, 1,3-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (cardiolipin) were studied with the aim to evaluate their possible antimicrobial properties. To this end, monomolecular films were formed at the air/water interface with pure cardiolipin or cardiolipin/GAPs mixtures; film properties were determined using surface pressure and surface potential measurements, as well as polarization-modulation infrared reflection-absorption spectroscopy. Moreover, to better understand the GAPs-phospholipid interaction at the molecular level, molecular dynamics simulations were performed. The results obtained indicate that the length of the central spacer has an effect on the interaction of GAPs with cardiolipin and on the properties of the lipid film. The GAPs with the longer linkers can be expected to be useful for biological membrane modification and for possible antimicrobial applications.
Read full abstract