FinFET is a new mainstream semiconductor device that is widely used in space applications. This paper studies the effects of radiation damage typically encountered in space applications by simulating the effects of total ionizing dose (TID) from 0 to 1 Mrad on a 15 nm n-type bulk FinFET. In particular we have simulated the effects of radiation damage on the transfer characteristic curve, threshold voltage and subthreshold swing of the FinFET. We have also varied some device process parameters such as gate length, fin width and fin height in order to assess their impact on the device susceptibility to radiation damage and our results show that the device structure with longer gate length, wider fin width and taller fin height have better performance. In addition, the higher channel doping concentration, the use of SiO2 in the gate, and the low device operating temperature can also effectively reduce the TID effects.