The aim of the present study was to evaluate the characteristics of the circadian rest‐activity rhythm of cancer patients. Thirty‐one in‐patients, consisting of 19 males and 12 females, were randomly selected from the Regional Cancer Center, Pandit Jawaharlal Nehru Medical College, Raipur, India. The rest‐activity rhythm was studied non‐invasively by wrist actigraphy, and compared with 35 age‐matched apparently healthy subjects (22 males and 13 females). All subjects wore an Actiwatch (AW64, Mini Mitter Co. Inc., USA) for at least 4–7 consecutive days. Fifteen‐second epoch length was selected for gathering actigraphy data. In addition, several sleep parameters, such as time in bed, assumed sleep, actual sleep time, actual wake time, sleep efficiency, sleep latency, sleep bouts, wake bouts, and fragmentation index, were also recorded. Data were analyzed using several statistical techniques, such as cosinor rhythmometry, spectral analysis, ANOVA, Duncan's multiple‐range test, and t‐test. Dichotomy index (I<O) and autocorrelation coefficient (r24) were also computed. The results validated a statistically significant circadian rhythm in rest‐activity with a prominent period of 24 h for most cancer patients and control subjects. Results of this study further revealed that cancer patients do experience a drastic alteration in the circadian rest‐activity rhythm parameters. Both the dichotomy index and r24 declined in the group of cancer patients. The occurrence of the peak (acrophase, Ø) of the rest‐activity rhythm was earlier (p<0.001) in cancer patients than age‐ and gender‐matched control subjects. Results of sleep parameters revealed that cancer patients spent longer time in bed, had longer assumed and actual sleep durations, and a greater number of sleep and wake bouts compared to control subjects. Further, nap frequency, total nap duration, average nap, and total nap duration per 1 h awake span were statistically significantly higher in cancer patients than control subjects. In conclusion, the results of the present study document the disruption of the circadian rhythm in rest‐activity of cancer in‐patients, with a dampening of amplitude, lowering of mean level of activity, and phase advancement. These alterations of the circadian rhythm characteristics could be attributed to disease, irrespective of variability due to gender, sites of cancer, and timings of therapies. These results might help in designing patient‐specific chronotherapeutic protocols.
Read full abstract