Major focus in interpreting phytoplankton changes in specific typologies of waterbodies or in single lakes is directed towards nutrients and climatic dynamics. During the last 35 years, Lake Garda (Northern Italy; A = 368 km2, zmax = 350 m, V = 49 km3) underwent a significant increase of phosphorus in the water column, from ca. 10 μg P l−1 to 18–22 μg P l−1. At the multi-decadal scale, the increase of the trophic status had a positive impact on the growth of Cyanobacteria (mainly Oscillatoriales) and, partly, diatoms, as demonstrated by the long-term ecological research carried out since the beginning of the 1990s in the deepest zone of the lake. Conversely, the increase of Peridiniales (mostly Ceratium hirundinella) in the recent years appeared also associated with the interannual variations of lake temperature. At the seasonal and annual scale, the development of the large diatoms and Oscillatoriales during the periods of their maximum growth (early spring, and summer and autumn, respectively) was strongly controlled by the extent of spring vertical water mixing and nutrient fertilization of surface waters, which, in turn, were negatively dependent on the air and water temperatures in winter and early spring. Therefore, contrary to the positive impact of milder winters on phytoplankton growth in many lakes of high latitudes, warmer winter temperatures in deep oligomictic lakes of lower latitudes can determine periodic shifts towards more oligotrophic conditions and a minor development of diatoms and specific harmful cyanobacterial groups (Oscillatoriales). The complex relationships between the explanatory and response variables were tested by applying Path Analysis (Structural Equation Modeling). This multiequational technique has great potential for studying causal relationships in temporally ordered variables. The results highlight the necessity to study the consequences of climatic fluctuations on the phytoplankton communities at different temporal scales and complexity, also including the indirect effects of climatic dynamics mediated by the morphometric, morphological and hydrological characteristics of lakes, and the possible synergic or opposite effects with other forcing variables, including nutrients.