CaMKII is a calcium-activated kinase that is abundant in neurons and has been strongly implicated in memory and learning. Here we show that low-frequency stimulation of glutamatergic afferents in hippocampal slices from juvenile domestic chicks results in long-term depression of synaptic transmission. This reduction does not require activation of NMDA or metabotropic glutamate receptors and does not require a rise in postsynaptic calcium. However, buffering presynaptic calcium prevents the reduction of the excitatory postsynaptic potential or current that is induced by low-frequency stimulation. In addition, application of the calmodulin antagonist calmidazolium, or the specific CaMKII antagonist KN-93, completely blocks long-term depression. These findings demonstrate a newly discovered form of long-term synaptic depression in the avian hippocampus.
Read full abstract