We present an extensive overview of the phase diagram, spin-wave excitations, and finite-temperature transitions of the anisotropic-exchange magnets on an ideal nearest-neighbor triangular lattice. We investigate transitions between five principal classical phases of the corresponding model: ferromagnetic, N\'{e}el, its dual, and the two stripe phases. Transitions are identified by the spin-wave instabilities and by the Luttinger-Tisza approach. Some of the transitions are direct and others occur via intermediate phases with more complicated forms of ordering. In a portion of the N\'{e}el phase, we find spin-wave instabilities to a long-range spiral-like state. In the stripe phases, quantum fluctuations are mostly negligible, leaving the ordered moment nearly saturated even for the $S=1/2$ case. However, for a two-dimensional surface of the full 3D parameter space, the spin-wave spectrum in one of the stripe phases exhibits an enigmatic accidental degeneracy manifested by pseudo-Goldstone modes. As a result, despite the nearly classical ground state, the ordering transition temperature in a wide region of the phase diagram is significantly suppressed from the mean-field expectation. We identify this accidental degeneracy as due to an exact correspondence to an extended Kitaev-Heisenberg model with emergent symmetries that naturally lead to the pseudo-Goldstone modes. There are previously studied dualities within the Kitaev-Heisenberg model on the triangular lattice that are exposed here in a wider parameter space. One important implication of this correspondence for the $S=1/2$ case is the existence of a region of the spin-liquid phase that is dual to the spin-liquid phase discovered recently by us. We complement our studies by the density-matrix renormalization group of the $S=1/2$ model to confirm some of the duality relations and to verify the existence of the dual spin-liquid phase.
Read full abstract