The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.