Background & aimsPrenatal folate exposure may alter epigenetic marks in the offspring. We aimed to evaluate associations between prenatal exposure to folic acid (FA) in preconception and in utero with cord blood DNA methylation in long interspersed nuclear element 1 (LINE-1) and Alu short interspersed nuclear elements (SINEs) as markers of global DNA methylation levels. MethodsData come from 325 mother-child pairs participating in the Nutrition in Early Life and Asthma (NELA) birth cohort (2015-2018). Pregnant women were asked about supplement use, including brand name and dose, one month before pregnancy (preconception) and through the trimesters of pregnancy. Maternal dietary folate intake was assessed using a validated food frequency questionnaire with additional questions for FA supplement use. Folate serum levels were measured in mothers at 24 weeks of gestation and in cord blood of newborns. DNA methylation was quantitatively assessed by bisulfite pyrosequencing on 5 LINE-1 and 3 Alu different elements. Associations were estimated using multivariable linear regression models. ResultsA reduction in methylation levels of LINE-1 in newborns was associated with the use of FA supplements below the recommended doses (<400 ug/day) during preconception (-0.50; 95% CI: -0.91, -0.09; P=0.016), and from preconception up to 12 weeks of gestation (-0.48; 95% CI: -0.88, -0.08; P=0.018). Maternal use of FA supplements above the tolerable upper intake level of 1000 ug/day from preconception until 12 weeks of gestation was also related to lower methylation in LINE-1 at birth (-0.77; 95% CI: -1.52, -0.02; P=0.044). Neither FA supplement use after 12 weeks of gestation nor maternal total folate intake (diet plus supplements) were associated with global DNA methylation levels at birth. ConclusionsMaternal non-compliance with the use of FA supplement recommendations from preconception up to 12 weeks of gestation reduces offspring global DNA methylation levels at birth.