Grain boundaries (GBs) and surface defects within perovskite films are inherent challenges that affect the photovoltaic performance of perovskite solar cells (PSCs. In this work, Nylon 11 (N11) is utilized, a long-chain polymer, for post-treating the GBs and surface defects within FAPbI3 films. The multifunctional groups of N11 exhibit unique passivation abilities, enabling self-regulation and selective correction of reverse-charged defects. Post-treating with N11 results in high-quality FAPbI3 films characterized by tight GBs and low surface defect density. Despite fabrication under full open-air conditions, the N11 post-treatment significantly enhances the power conversion efficiency (PCE) value of FAPbI3 PSCs, increasing it from the reference value of 21.89% to 23.54%. Importantly, the long alkyl chain present in N11 significantly enhances the humidity stability of the PSCs. Unencapsulated PSCs treated with N11 maintain 89% of their initial PCE after exposure to air with 30% relative humidity (RH) for 1000h, demonstrating resilience to elevated humidity levels. This work highlights the substantial improvement in the photovoltaic performance of PSCs achieved through the post-treatment with N11.