Abstract

The phenomenon of the ‘coil-stretch’ (C-S) transition, wherein a long-chain polymer initially in a coiled state undergoes a sudden configuration change to become fully stretched under steady elongational flows, has been widely recognized. This transition can display intricate hysteresis behaviours under specific critical conditions, giving rise to unique rheological characteristics in dilute polymer solutions. Historically, microscopic stochastic models and Brownian dynamics simulations have shed light on the underlying mechanisms of the transition by uncovering bistable configurations of polymer chains. Following the initial work by Cerf (J. Chem. Phys., vol. 20, 1952, pp. 395–402), we introduce a continuum model in this study to investigate the C-S transition in a constant uniaxial elongational flow. Our approach involves approximating the unfolding process of the polymer chain as an axisymmetric deformation of an elastic particle. We make the assumption that the particle possesses uniform material properties, which can be represented by a nonlinear, strain-hardening constitutive equation to replicate the finite extensibility of the polymer chain. Subsequently, we analytically solve for the steady-state deformation using a polarization method. By employing this reduced model, we effectively capture the C-S transition and establish its specific correlations with material and geometric properties. The hysteresis phenomena can be comprehended through a force-balance analysis, which involves comparing the externally applied viscous forces with the intrinsic elastic responsive forces. We demonstrate that our model, while simple, unveils rich elastohydrodynamics of the C-S transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call