In order to comply with the requirement of flame retardancy and electromagnetic interference (EMI) shielding for encapsulant applied to electronic devices, multifunctional thermoplastic polyurethane (TPU) composites are prepared with the construction of an intumescent flame retardant (IFR) system comprising internal conductive network. In this work, ammonium polyphosphate wrapped with MXene (MXene@APP) is attained by microencapsulation, and expandible graphite decorated with Ag nanoparticles (AgNPs@EG) is prepared by the reducibility of silk sericin. The IFR system with conductivity is established by the introduction of MXene@APP, AgNPs@EG and furfural-derived Schiff base (FDS). The as-prepared TPU/MXene@APP/FDS/AgNPs@EG composites are able to attain significant elevation in flame retardancy, exhibiting V-0 rating and a LOI value of 33.1 %. Furthermore, TPU composites are integrated with warp-knitted metal mesh (WMM) to fabricate TPU@WMM coated fabric, displaying strengthened electromagnetic interference (EMI) shielding effectiveness (SE) of 37.53 dB within X band. This work provides a potential method for application in encapsulant with flame retardancy and electromagnetic protection.
Read full abstract