The current paper is devoted to the study of traveling wave solutions of the following parabolic-elliptic-elliptic chemotaxis systems, \begin{document}$\begin{equation}\label{main-eq-abstract}\begin{cases}u_{t} = Δ u- \nabla · ({ χ_1 u} \nabla v_1)+ \nabla · ({ χ_2 u} \nabla v_2) + u(a-bu), \;\;\;\;x∈\mathbb{R}^N, \\0 = Δ v_1-λ_1v_1+μ_1u, \;\;\;\;x∈\mathbb{R}^N, \\0 = Δ v_2-λ_2v_2+μ_2u, \;\;\;\; x∈\mathbb{R}^N, \end{cases}\;\;\;\;\;\;\;\;(0.1)\end{equation}$ \end{document} where \begin{document}$a>0, b>0, $\end{document} \begin{document}$u(x, t)$\end{document} represents the population density of a mobile species, \begin{document}$v_1(x, t), $\end{document} represents the population density of a chemoattractant, \begin{document}$v_2(x, t)$\end{document} represents the population density of a chemorepulsion, the constants \begin{document}$χ_1≥ 0$\end{document} and \begin{document}$χ_2≥ 0$\end{document} represent the chemotaxis sensitivities, and the positive constants \begin{document}$λ_1, λ_2, μ_1$\end{document} , and \begin{document}$μ_2$\end{document} are related to growth rate of the chemical substances. It was proved in an earlier work by the authors of the current paper that there is a nonnegative constant \begin{document}$K$\end{document} depending on the parameters \begin{document}$χ_1, μ_1, λ_1, χ_2, μ_2$\end{document} , and \begin{document}$λ_2$\end{document} such that if \begin{document}$b+χ_2μ_2>χ_1μ_1+K$\end{document} , then the positive constant steady solution \begin{document}$(\frac{a}{b}, \frac{aμ_1}{bλ_1}, \frac{aμ_2}{bλ_2})$\end{document} of (0.1) is asymptotically stable with respect to positive perturbations. In the current paper, we prove that if \begin{document}$b+χ_2μ_2>χ_1μ_1+K$\end{document} , then there exists a positive number \begin{document}$c^{*}(χ_1, μ_1, λ_1, χ_2, μ_2, λ_2)≥ 2\sqrt{a}$\end{document} such that for every \begin{document}$ c∈ ( c^{*}(χ_1, μ_1, λ_1, χ_2, μ_2, , ∞)$\end{document} and \begin{document}$ξ∈ S^{N-1}$\end{document} , the system has a traveling wave solution \begin{document}$(u(x, t), v_1(x, t), v_2(x, t)) = (U(x·ξ-ct), V_1(x·ξ-ct), V_2(x·ξ-ct))$\end{document} with speed \begin{document}$c$\end{document} connecting the constant solutions \begin{document}$(\frac{a}{b}, \frac{aμ_1}{bλ_1}, \frac{aμ_2}{bλ_2})$\end{document} and \begin{document}$(0, 0, 0)$\end{document} , and it does not have such traveling wave solutions of speed less than \begin{document}2\sqrt a $\end{document} . Moreover we prove that \begin{document}$\begin{equation*}\lim\limits_{(χ_{1}, χ_2)?(0^+, 0^+)}c^{*}(χ_1, μ_1, λ_1, χ_2, μ_2, λ_2) = \begin{cases} 2\sqrt{a} \;\;\text{if}\;\; a≤ \min\{λ_1, λ_2\}\\\frac{a+λ_1}{\sqrt{λ_1}} \;\;\text{if}\;\; λ_1≤ \min\{a, λ_2\}\\\frac{a+λ_2}{\sqrt{λ_2}} \;\;\text{if}\;\; λ_2≤ \min\{a, λ_1\}\end{cases}\end{equation*}$ \end{document} for every \begin{document}$ λ_1, λ_2, μ_1, μ_2>0$\end{document} , and \begin{document}$\begin{equation*}\lim\limits_{x?∞}\frac{U(x)}{e^{-\sqrt a μ x}} = 1, \end{equation*}$ \end{document} where \begin{document}$μ$\end{document} is the only solution of the equation \begin{document}$μ+\frac{1}{μ} = \frac{c}{\sqrt{a}}$\end{document} in the interval \begin{document}$(0 , \min\{1, \sqrt{\frac{λ_1}{a}}, \sqrt{\frac{λ_2}{a}}\})$\end{document} .
Read full abstract