This work aims to manufacture a new concentrated lactose-free probiotic yogurt. For this purpose, the probiotic Bifidocaterium BB-12 was incorporated in a concentrated lactose-free yogurt, both in its free form and previously encapsulated. Previous cell encapsulation was performed using the spray-drying technique with the following wall materials: lactose-free milk, lactose-free milk and inulin, and lactose-free milk and oligofructose. Thus, three different probiotic powders were obtained and added separately to three fractions of concentrated lactose-free yogurt. The probiotic survival of both powders and yogurts was evaluated during refrigerated storage. Likewise, the viability of starter cultures in yogurt (Lactobacillus bulgaricus and Streptococcus thermophilus) was controlled. In addition, the physicochemical properties of the four yogurts were also measured (color, pH and acidity, and texture properties). All three powders showed good probiotic viability (>8 log CFU g−1) throughout 120 days of storage at 4 °C. In turn, yogurt formulations (with the addition of powders or free bifidobacteria) presented probiotic viability above 7 log CFU g−1 after storage; as well as the starter cultures (>8 log UFC g−1). Yogurt with probiotic powder from lactose-free milk showed a more yellowish color; however, these differences would not be detected by the human eye (ΔE < 3.00). The yogurt with bifidobacteria free cells showed a greater post-acidification process (pH 4.18 to 4.02 and titratable acidity 1.52 to 1.89). It was not observed differences for firmness values of yogurt with free cells addition and yogurt with lactose-free milk and oligofructose powder addition. A slight significant decrease in the cohesiveness was observed in the yogurt elaborated with bifidobacteria free cells. The gumminess showed fluctuating values between all concentrated lactose-free yogurts. At the end of this study, we conclude that these probiotic powders can be incorporated into innovative lactose-free yogurts.
Read full abstract