In recent years, the non-invasive load monitoring (NILM) method based on sparse coding has shown promising research prospects. This type of method learns a sparse dictionary for each monitoring target device, and it expresses load decomposition as a problem of signal reconstruction using dictionaries and sparse vectors. The existing NILM methods based on sparse coding have problems such as inability to be applied to multi-state and time-varying devices, single-load characteristics, and poor recognition ability for similar devices in distributed manners. Using the analysis above, this paper focuses on devices with similar features in households and proposes a distributed non-invasive load monitoring method using Karhunen–Loeve (KL) feature extraction and an improved deep dictionary. Firstly, Karhunen–Loeve expansion (KLE) is used to perform subspace expansion on the power waveform of the target device, and a new load feature is extracted by combining singular value decomposition (SVD) dimensionality reduction. Afterwards, the states of all the target devices are modeled as super states, and an improved deep dictionary based on the distance separability measure function (DSM-DDL) is learned for each super state. Among them, the state transition probability matrix and observation probability matrix in the hidden Markov model (HMM) are introduced as the basis for selecting the dictionary order during load decomposition. The KL feature matrix of power observation values and improved depth dictionary are used to discriminate the current super state based on the minimum reconstruction error criterion. The test results based on the UK-DALE dataset show that the KL feature matrix can effectively reduce the load similarity of devices. Combined with DSM-DDL, KL has a certain information acquisition ability and acceptable computational complexity, which can effectively improve the load decomposition accuracy of similar devices, quickly and accurately estimating the working status and power demand of household appliances.
Read full abstract