Frequent soil drying and wetting cycles significantly affect the mineralization processes of soil organic carbon (SOC) and total nitrogen (STN), impacting soil quality and contributing to nutrient loss. However, the effects of these dry–wet cycles on SOC and STN mineralization in dam soil are not well understood. This study simulated four consecutive wet–dry cycles under five soil moisture gradients of 0% (CK), 5%, 10%, 15%, and 100%, and 100%, across four cycles of 7, 14, 21, and 28 days, to investigate the effects on soil aggregates, enzyme activities, and the mineralization of SOC and STN. The results indicated that soil enzyme activity peaked after two dry–wet cycles and then began to decline. The dry–wet cycles reduced the proportion of soil macro-aggregates while also decreasing the proportions of small and micro-aggregates. In contrast, the 100% treatment conditions exhibited the opposite effect. Dry–wet cycles enhanced the mineralization rates of SOC and STN, with the average mineralization rates under the 10% soil moisture content being the highest—1.78 and 2.38 times greater than the CK treatment for SOC and STN, respectively. The impact of dry–wet cycles on SOC and STN mineralization through the enzyme pathway was greater than through the aggregate pathway. These research findings provide theoretical insights and scientific references for the efficient operation and ecological protection of sedimentation dams in the Loess Plateau.
Read full abstract