With rapid urbanization and industrialization, Vietnam is facing many challenges in solid waste management and increasing energy demand. In this context, the development of renewable energy from solid waste not only solves the problem of environmental pollution but also makes an important contribution to energy security and sustainable economic development. Solid waste to energy is a system of solid waste reatment by thermal methods, in which the heat generated from this treatment process is recovered and utilized to produce energy. Site selection is one of the biggest challenges for renewable energy projects. In addition to technical factors, this decision must also consider environmental impacts, including protecting ecosystems, minimizing noise, and limiting impacts on public health. To solve this problem, multi-criteria decision making (MCDM) methods combined with fuzzy numbers are often used. These methods allow planners to evaluate and balance competing factors, thereby determining the most optimal location for the project. In this study, the authors proposed a Spherical Fuzzy Multi-Criteria Decision-making Model (SFMCDM) for site selection in solid waste-to-energy projects. In the first stage, all criteria affecting the decision-making process are defined based on literature review, experts and triple bottom line model (social, environmental, and economic), and analytic hierarchy process (AHP), and fuzzy theory is applied for calculating the weights in the second stage. The weighted aggregated sum product assessment (WASPAS) method is utilized for ranking four potential locations in the final stage. The contribution of the proposed process is its structured, systematic, and innovative approach to solving the location selection problem for renewable energy projects. Choosing the right location not only ensures the success of the project but also contributes to the sustainable development of renewable energy.
Read full abstract