When designing smart cities’ building blocks, mobility data plays a fundamental role in applications and services. However, mobility data usually comes with unrestricted location of its corresponding entities (e.g., citizens and vehicles) and poses privacy concerns, among them recovering the identity of those entities with linking attacks. Location Privacy Protection Mechanisms (LPPMs) based on anonymization, such as mix-zones, have been proposed to address the privacy of users’ identity. Once the data is protected, a comprehensive discussion about the trade-off between privacy and utility happens. However, issues still arise about the application of anonymized data to smart city development: what are the smart cities applications and services that can best leverage mobility data anonymized by mix-zones? To answer this question, we propose the Utility Analysis Framework of Anonymized Trajectories for Smart Cities-Application Domains (UAFAT). This characterization framework measures the utility through twelve metrics related to privacy, mobility, and social, including mix-zones performance metrics from anonymized trajectories produced by mix-zones. This framework aims to identify applications and services where the anonymized data will provide more or less utility in various aspects. The results evaluated with cabs and privacy cars datasets showed that further characterizing it by distortion level, UAFAT ranked the smart cities application domains that best leverage mobility data anonymized by mix-zones. Also, it identified which one of the four case studies of smart city applications had more utility. Additionally, different datasets present different behaviors in terms of utility. These insights can contribute significantly to the utility of both open and private data markets for smart cities.