Wind profile data within the first two kilometres of a coast have been used to study the wind field modification downstream of this surface discontinuity. The land area is generally very flat, having an overall roughness length of 0.04 m. A wind model, suitable for practical applications and inexpensive to run, has been tested against the data and was found to give satisfactory results. Knowing the climatological statistics of wind and stratification, e.g., at the coast, the model may thus be used to estimate, on a climatological basis, how the wind field is modified with distance inland, at least in areas with only minor topography. This type of information is of great importance when locating wind turbines. It is in these cases also important to know the statistics of the internal boundary-layer (IBL) height, as the turbulence intensity may be quite different in and above the IBL, which in turn may influence load and fatigue calculations. Using the wind profile data, the IBL height was clearly discernible in the majority of cases. Having very unstable stratification over land, the IBL height could, however, not be determined from the wind profiles, as the wind in these cases did not decrease inland. This result was also obtained using the wind model. A simple model of the type z IBL = a · x b, was instead tested, and was shown to give reasonable results.
Read full abstract