AbstractThe expansion of the electric grid is inevitable. Renewable energy is on the rise, and new transmission lines must be built to link new electricity production facilities with the local network. In addition, higher electricity demand due to electrification will lead to the growth of the distribution grid. However, further construction of power lines will affect the local biodiversity. Birds are especially vulnerable: every year, power lines cause the deaths of hundreds of millions of birds by collision and electrocution. Yet the environmental impacts of the electric grid in life cycle assessment (LCA) are limited to a few impact categories, failing to cover the area of protection for damages to ecosystem quality. We developed the first methodology to quantify power lines' collision and electrocution impacts on bird richness within LCA. We calculated the potentially disappeared fraction of species (PDF) by developing species–area relationships using high‐resolution species distribution maps, species‐specific characteristics, and the location of power lines and pylons. We applied our models to Norway, a country that aims to become a low‐emission nation by 2050. The characterization factors ranged between 8.48 × 10−16 and 5.6 × 10−15 PDF*yr/kWh for collision and 3.27 × 10−18 and 1.66 × 10−16 PDF*yr/kWh for electrocution. Integrating power lines’ impacts on biodiversity in LCA is essential, as harmonized models can estimate the effects of electricity production alongside the impacts of electricity distribution. This brings us a step further in promoting a holistic assessment of energy systems.