Healthcare data management has become a critical research area, primarily driven by the widespread adoption of personal health monitoring systems and applications. These systems generate an immense volume of data, necessitating efficient and reliable management solutions for lossless sharing. This article introduces a Collaborative Data Management Framework (CDMF) that leverages the combined strengths of parallel computing and federated learning. The proposed CDMF is designed to achieve two primary objectives: reducing computational complexity in data handling and ensuring high sharing accuracy, regardless of the data generation rate. The framework employs parallel computing to streamline the scheduling and processing of data acquired at various intervals. This approach minimizes processing delays by operating on a less complex scheduling algorithm, making it suitable for handling high-frequency data generation. Federated learning, on the other hand, plays a pivotal role in verifying data distribution and maintaining sharing accuracy. By enabling decentralized learning, federated learning ensures that data remains on local devices while sharing only the necessary model updates. This approach enhances privacy and security, a critical consideration in healthcare data management. It ensures that data distribution and sharing are verified based on appropriate requests while avoiding latency issues. By decentralizing the learning process, federated learning enhances privacy and security, as raw data does not leave the local systems. This cooperative interaction between parallel computing and federated learning operates in a cyclic manner, allowing the framework to adapt dynamically to increasing monitoring intervals and varying data rates. The performance of the CDMF is validated through improvements in two key metrics. First, the framework achieves a 15.08% enhancement in sharing accuracy, which is vital for maintaining data integrity and reliability during transfers. Second, it reduces computation complexity by 9.48%, even when handling maximum data rates. These results highlight the framework’s potential to revolutionize healthcare data management by addressing the dual challenges of scalability and accuracy.
Read full abstract