Solvation of drugs in the core (C) and headgroup (H) strata of phospholipid bilayers affects their physiological transport rates and accumulation. These characteristics, especially a complete drug distribution profile across the bilayer strata, are tedious to obtain experimentally, to the point that even simplified preferred locations are only available for a few dozen compounds. Recently, we showed that the partition coefficient (P) values in the system of hydrated diacetyl phosphatidylcholine (DAcPC) and n-hexadecane (C16), as surrogates of the H- and C-strata of the bilayer composed of the most abundant mammalian phospholipid, PC, agree well with the preferred bilayer location of compounds. High P values are typical for lipophiles accumulating in the core, and low P values are characteristic of cephalophiles preferring the headgroups. This simple pattern does not hold for most compounds, which usually have more even distribution and may also accumulate at the H/C interface. To model complete distribution, the correlates of solvation energies are needed for each drug state in the bilayer: (1) for the H-stratum it is the DAcPC/W P value, calculated as the ratio of the C16/W and C16/DAcPC (W for water) P values; (2) for the C-stratum, the C16/W P value; (3) for the H/C interface, the P values for all plausible molecular poses are characterized using the fragment DAcPC/W and C16/W solvation parameters for the parts of the molecule embedded in the H- and C-strata, respectively. The correlates, each scaled by two Collander coefficients, were used in a nonlinear, mass-balance based model of intrabilayer distribution, which was applied to the easily measurable overall P values of compounds in the DMPC (M = myristoyl) bilayers and monolayers as the dependent variables. The calibrated model for 107 neutral compounds explains 94% of experimental variance, achieves similar cross-validation levels, and agrees well with the nontrivial, experimentally determined bilayer locations for 27 compounds. The resulting structure-based prediction system for intrabilayer distribution will facilitate more realistic modeling of passive transport and drug interactions with those integral membrane proteins, which have the binding sites located in the bilayer, such as some enzymes, influx and efflux transporters, and receptors. If only overall bilayer accumulation is of interest, the 1-octanol/W P values suffice to model the studied set.