AbstractThis paper presents a novel and efficient locally adaptive denoising method based on clustering of pixels into regions of similar geometric and radiometric structures. Clustering is performed by adaptively segmenting pixels in the local kernel based on their augmented variational series. Then, noise pixels are restored by selectively considering the radiometric and spatial properties of every pixel in the formed clusters. The proposed method is exceedingly robust in conveying reliable local structural information even in the presence of noise. As a result, the proposed method substantially outperforms other state-of-the-art methods in terms of image restoration and computational cost. We support our claims with ample simulated and real data experiments. The relatively fast runtime from extensive simulations also suggests that the proposed method is suitable for a variety of image-based products — either embedded in image capturing devices or applied as image enhancement software.
Read full abstract