Super-resolution surface-enhanced Raman scattering (SERS) allows researchers to overcome the resolution limit of far field optical microscopy and peer into electromagnetic hot spots with nanoscale resolution. By localizing the signal from single (or few) molecules on the surface of plasmonic nanoparticle aggregates, relationships between the spatial origin of the SERS signal, local electromagnetic field enhancements, and SERS intensity can be determined. This Perspective describes the successes and challenges of super-resolution SERS, from the earliest mapping of single-molecule SERS hot spots to the current state-of-the-art, while highlighting open questions and future opportunities to advance the field. Comparisons with fluorescence-based super-resolution imaging are discussed to help frame the unique challenges associated with performing SERS in the super-resolution regime.
Read full abstract