Despite great efforts in recent years to research robust facial landmark localization methods, occlusion remains a challenge. To tackle this challenge, we propose a model called the Landmark-in-Facial-Component Network (LFCNet). Unlike mainstream models that focus on boundary information, LFCNet utilizes the strong structural constraints inherent in facial anatomy to address occlusion. Specifically, two key modules are designed, a component localization module and an offset localization module. After grouping landmarks based on facial components, the component localization module accomplishes coarse localization of facial components. Offset localization module performs fine localization of landmarks based on the coarse localization results, which can also be seen as delineating the shape of facial components. These two modules form a coarse-to-fine localization pipeline and can also enable LFCNet to better learn the shape constraint of human faces, thereby enhancing LFCNet's robustness to occlusion. LFCNet achieves 4.82% normalized mean error on occlusion subset of WFLW dataset and 6.33% normalized mean error on Masked 300W dataset. The results demonstrate that LFCNet achieves excellent performance in comparison to state-of-the-art methods, especially on occlusion datasets.