The current study is a pioneering work in presenting the boundary-layer equations for the 2-D flow and heat transfer of the Cross fluid over a linearly stretching sheet. The system of PDE is turned down into highly non-linear ODE by applying suitable similarity transformations. The stretching sheet solutions are presented via. a numerical technique namely the shooting method and graphs are constructed. The impact of the emerging parameters namely the power-law index, n, the local Weissenberg number, We, and the Prandtl number on the velocity and temperature fields are investigated through graphs. The numerical values of the local skin friction coefficient and the local Nusselt number are also presented in tabular form. Additionally, the graphs are sketched for the local skin friction coefficient and the local Nusselt number. It is observed that with growing values of the local Weissenberg number the velocity profiles exhibited a decreasing trend while opposite behavior is seen for the temperature field. Further, comparisons are made with previously available literature for some limiting cases and an excellent agreement is achieved.