In this paper we investigate the ‘local’ properties of a random mapping model, TnD̂, which maps the set {1, 2, …, n} into itself. The random mapping TnD̂, which was introduced in a companion paper (Hansen and Jaworski (2008)), is constructed using a collection of exchangeable random variables D̂1, …, D̂n which satisfy In the random digraph, GnD̂, which represents the mapping TnD̂, the in-degree sequence for the vertices is given by the variables D̂1, D̂2, …, D̂n, and, in some sense, GnD̂ can be viewed as an analogue of the general independent degree models from random graph theory. By local properties we mean the distributions of random mapping characteristics related to a given vertex v of GnD̂ - for example, the numbers of predecessors and successors of v in GnD̂. We show that the distribution of several variables associated with the local structure of GnD̂ can be expressed in terms of expectations of simple functions of D̂1, D̂2, …, D̂n. We also consider two special examples of TnD̂ which correspond to random mappings with preferential and anti-preferential attachment, and determine, for these examples, exact and asymptotic distributions for the local structure variables considered in this paper. These distributions are also of independent interest.