Estuary restoration in Tampa Bay, Florida, United States, is an ongoing focus of natural resource managers because of pressure from an increasing coastal population, historic habitat loss, and restoration's importance to economic development, recreational activities, and fish habitat. A growing population can also limit future large‐scale restorations due to associations with cost and land availability. This limitation might be overcome by applying the habitat mosaic approach to restoration, which creates distinct habitat types at small spatial scales. This approach was applied to create three types of estuarine habitat, reconnected tidal creek, salt marsh, and tidal pond. The objectives of this study were to (1) initiate monitoring of a restored wetland mosaic and (2) determine how fish diversity and community structure vary among restored habitat types. Replicated sampling using a 3‐mm mesh seine was used to characterize the fish communities. Our results indicate that the habitat mosaic approach creates suitable habitat for a variety of fish species where 37% of fish species were captured in just one habitat type. In particular, the recreationally important Centropomus undecimalis (common snook) was more common in the mangrove‐lined creek and the non‐native Sarotherodon melanotheron (blackchin tilapia) was common in the tidal pond. Greater emphasis should be placed on applied restoration research to identify how habitat types within a larger restoration mosaic contribute to local species diversity and recreationally and commercially important fishes, while limiting non‐natives. This emphasis could reveal how restoration approaches can be modified to include habitat mosaics, maximizing their contribution to productive fish habitat.