Land-cover characterization of large heterogeneous landscapes is challenging because of the confusion caused by high intra-class variability and heterogeneous landscape artefacts. Neighbourhood context can be used to supplement spectral information, and a novel way of incorporating spatial dependence in a heterogeneous region is tested here using an ensemble learning technique called random forests and a measure of local spatial dependence called the Getis statistic. The overall Kappa accuracy of the random forest classifier that used a combination of spectral and local spatial (Getis) variables at three different neighbourhood sizes (3 × 3, 7 × 7, and 11 × 11) ranged from 0.85 to 0.92. This accuracy was higher than that of a non-spatial random forest classifier having an overall Kappa accuracy of 0.78, which was run using the spectral variables only. This study demonstrated that the use of the Getis statistic with different neighbourhood sizes leads to substantial increase in per class classification accuracy of heterogeneous land-cover categories.
Read full abstract