We consider fractional operators of the form Hs=(∂t-divx(A(x,t)∇x))s,(x,t)∈Rn×R,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathcal {H}}^s=(\\partial _t -\ ext {div}_{x} ( A(x,t)\ abla _{x}))^s,\\ (x,t)\\in {\\mathbb {R}}^n\ imes {\\mathbb {R}}, \\end{aligned}$$\\end{document}where sin (0,1) and A=A(x,t)={A_{i,j}(x,t)}_{i,j=1}^{n} is an accretive, bounded, complex, measurable, ntimes n-dimensional matrix valued function. We study the fractional operators {{mathcal {H}}}^s and their relation to the initial value problem (λ1-2su′)′(λ)=λ1-2sHu(λ),λ∈(0,∞),u(0)=u,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\begin{aligned} (\\lambda ^{1-2s}\ extrm{u}')'(\\lambda )&=\\lambda ^{1-2s}{\\mathcal {H}}\ extrm{u}(\\lambda ), \\quad \\lambda \\in (0, \\infty ), \\\\ \ extrm{u}(0)&= u, \\end{aligned} \\end{aligned}$$\\end{document}in {mathbb {R}}_+times {mathbb {R}}^ntimes {mathbb {R}}. Exploring the relation, and making the additional assumption that A=A(x,t)={A_{i,j}(x,t)}_{i,j=1}^{n} is real, we derive some local properties of solutions to the non-local Dirichlet problem Hsu=(∂t-divx(A(x,t)∇x))su=0for(x,t)∈Ω×J,u=ffor(x,t)∈Rn+1\\(Ω×J).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathcal {H}}^su=(\\partial _t -\ ext {div}_{x} ( A(x,t)\ abla _{x}))^su&=0\\hbox { for}\\ (x,t)\\in \\Omega \ imes J,\ onumber \\\\ u&=f \ ext{ for } (x,t)\\in {\\mathbb {R}}^{n+1}\\setminus (\\Omega \ imes J). \\end{aligned}$$\\end{document}Our contribution is that we allow for non-symmetric and time-dependent coefficients.