Worldwide, the COVID-19 pandemic has been influenced by a combination of environmental and sociodemographic drivers. To date, population studies have overwhelmingly focused on the impact of societal factors. In New Mexico, the rate of COVID-19 infection and mortality varied significantly among the state's geographically dispersed, and racially and ethnically diverse populations who are exposed to unique environmental contaminants related to resource extraction industries (e.g. fracking, mining, oil and gas exploration). By looking at local patterns of COVID-19 disease severity, we sought to uncover the spatially varying factors underlying the pandemic. We further explored the compounding role of potential long-term exposures to various environmental contaminants on COVID-19 mortality prior to widespread applications of vaccinations. To illustrate the spatial heterogeneity of these complex associations, we leveraged multiple modeling approaches to account for spatial non-stationarity in model terms. Multiscale geographically weighted regression (MGWR) results indicate that increased potential exposure to fugitive mine waste is significantly associated with COVID-19 mortality in areas of the state where socioeconomically disadvantaged populations were among the hardest hit in the early months of the pandemic. This relationship is paradoxically reversed in global models, which fail to account for spatial relationships between variables. This work contributes both to environmental health sciences and the growing body of literature exploring the implications of spatial nonstationarity in health research.