One of the critical factors influencing the accuracy of a local geoid model is the quality of the digital elevation model (DEM). A properly selected high-resolution DEM can significantly mitigate errors in geoid modeling, gravity anomaly processing, and topography and downward continuation correction. Purpose. Evaluating the accuracy of five global DEMs obtained from open sources to identify the most suitable model for creating a local geoid. Methodology. The vertical accuracy of the DEMs was assessed by comparing the heights between the DEM and control points across different types of terrain. The reference values are based on 344 ground benchmarks, where GNSS observations were performed with subsequent adjustment of coordinates and heights. The accuracy analysis involved calculating statistical indicators of the height differences between the GNSS data and the DEM data. Findings. The standard deviation assessment showed favorable values for the COPERNICUS and ALOS DEMs, followed by SRTM, ASTER, and ETOPO. In the mean absolute error calculations for mountainous areas, the ALOS model performed best, followed by COPERNICUS, SRTM, ASTER, and ETOPO. For other types of terrain, COPERNICUS demonstrated the best results in mean absolute error. Originality. This study distinguishes itself through the incorporation of advanced high-resolution DEMs, such as GLO30, providing a modern and thorough evaluation of DEM accuracy specifically for Kazakhstan. What is new is a detailed analysis of the impact of terrain features (plain, hilly, mountainous) on modeling accuracy. This approach advances beyond previous assessments, delivering new and significant insights into the performance of contemporary DEMs. Practice value. The practical value of the results obtained consists in issuing recommendations regarding the possibility of using the studied DEM for the regions of Kazakhstan which differ among themselves in terms of landscape characteristics. The findings indicate that COPERNICUS and ALOS DEMs are highly suitable for precise geoid modeling in southern Kazakhstan. These models can significantly improve the accuracy of local geoid models, benefiting applications in geospatial science and engineering.