With the development of the Internet of Things, cloud networking, and 4K/8K high-definition video, global internet traffic has seen a dramatic increase. This surge in traffic has placed higher demands on the performance of optical networks, featuring higher data rates, lower latency, and lower cost. The passive optical network (PON) is a representative scenario of optical access networks. Issues such as burst-mode detection in upstream PON scenarios, flexible rate allocation in downstream scenarios, and the simplification of hardware complexity at the optical network unit (ONU) side have attracted considerable attention. Compared to intensity modulation/direct detection (IM/DD), a recently proposed coherent PON incorporates a local oscillator laser at the receiver, enabling superior receiver sensitivity, spectrally efficient modulation, linear optical field recovery, and flexible channel selection. These features significantly enhance the flexibility and data rates of PON systems. This paper provides a comprehensive review of the development of coherent PONs, particularly in aspects of preamble design for burst-mode detection in upstream scenarios, the design of flexible rate PONs in downstream scenarios, and solutions for reducing hardware complexity at the ONU side.
Read full abstract